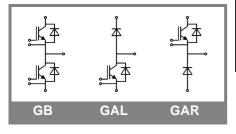


IGBT Modules


SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

Features

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (10 mm) and creepage distance (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specific				
Symbol			Values	Units
IGBT				
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	75	Α
		T _{case} = 80 °C	60	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		150	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	Diode			
I_{F}	T _j = 150 °C	T_{case} = 25 °C	75	Α
		T_{case} = 80 °C	50	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		150	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	480	Α
Freewhe	eling Diode		•	
I_{F}	T _j = 150 °C	T_{case} = 25 °C	95	Α
		T _{case} = 80 °C	65	Α
I_{FRM}	I _{FRM} =2xI _{Fnom}		200	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin$	T _j = 150 °C	720	Α
Module			•	
$I_{t(RMS)}$			200	Α
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

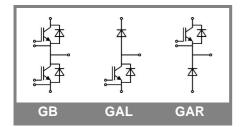
Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C T _i = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		22	28	mΩ
		T _j = 125°C		30	38	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				3,3	4,3	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5	0,6	nF
C _{res}				0,22	0,3	nF
Q_G	V _{GE} = -8 - +20V			500		nC
R _{Gint}	$T_j = {^{\circ}C}$			5		Ω
t _{d(on)}				44	100	ns
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		56	100	ns
E _{on}		I _C = 50A		8		mJ
t _{d(off)}	$R_{Goff} = 22 \Omega$	T _j = 125 °C		380	500	ns
t _f		$V_{GE} = \pm 15V$		70	100	ns
E _{off}				5		mJ
$R_{th(j-c)}$	per IGBT				0,27	K/W

IGBT Modules

SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

Features

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)


Typical Applications

- AC inverter drives
- UPS

Characte	Characteristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D							
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V	
		$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,8		V	
V_{F0}				1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		18	26	mΩ	
		T _j = 125 °C				mΩ	
I _{RRM}	I _F = 50 A	T _j = 125 °C		35		A	
Q _{rr}	di/dt = 800 A/µs					μC	
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ	
R _{th(j-c)D}	per diode				0,6	K/W	
	eling Diode						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			1,85	2,2	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,6		V	
V_{F0}		T _j = 25 °C		1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		15	20	V	
		T _j = 125 °C				V	
I _{RRM}	I _F = 50 A	T _j = 125 °C		40		A	
Q _{rr}	.,,					μC	
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ	
$R_{th(j-c)FD}$	per diode				0,5	K/W	
Module							
L _{CE}					30	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ	
		T _{case} = 125 °C		1		$m\Omega$	
R _{th(c-s)}	per module				0,05	K/W	
M_s	to heat sink M6		3		5	Nm	
M_t	to terminals M5		2,5	_	5	Nm	
w					160	g	

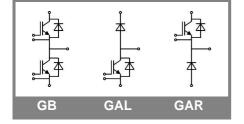
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

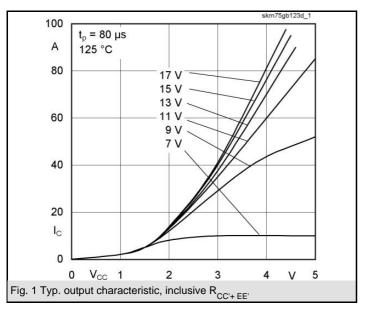
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

IGBT Modules

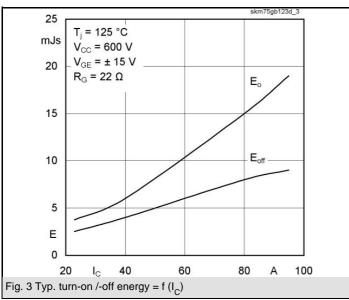
SKM 75GB123D SKM 75GAL123D SKM 75GAR123D

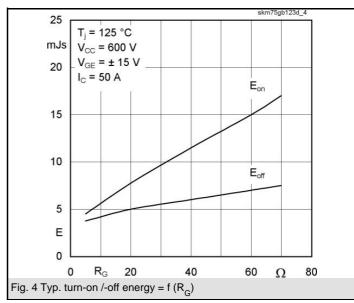
Features

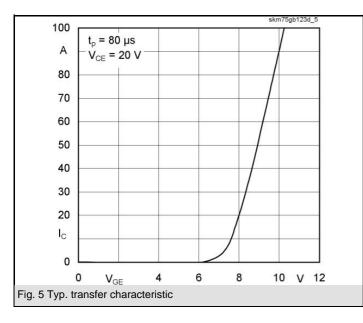

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)

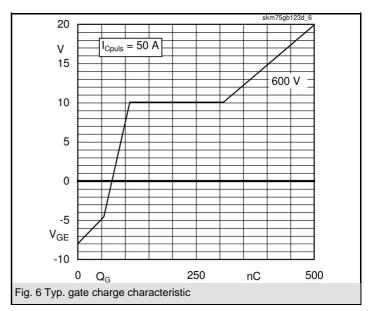

Typical Applications

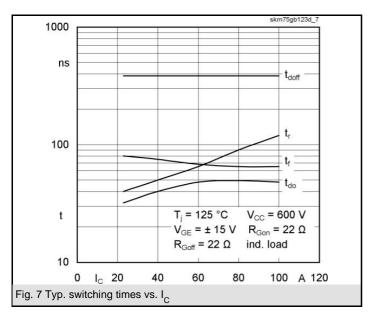
- AC inverter drives
- UPS

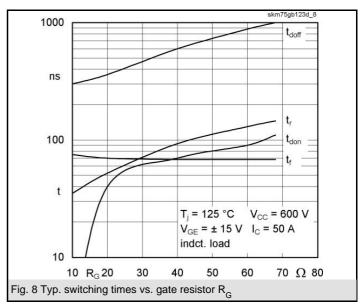

Z _{th} Symbol	Conditions	Values	Units
Z _{Ri} th(j-c)l			
R _i	i = 1	180	mk/W
R _i	i = 2	64	mk/W
Ri	i = 3	22	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,0479	s
tau _i	i = 3	0,008	s
tau _i	i = 4	0,005	s
Z,,,,,,,,,,,	•		
Z Rith(j-c)D	i = 1	380	mk/W
R _i	i = 2	190	mk/W
R _i	i = 3	26	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0947	s
taui	i = 2	0,006	s
tau _i	i = 3	0,08	s
tau _i	i = 4	0,003	s

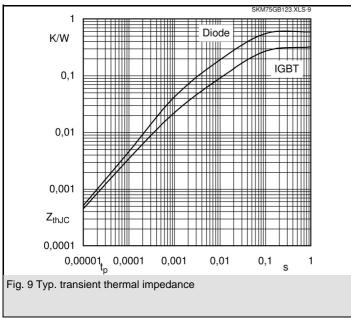

© by SEMIKRON

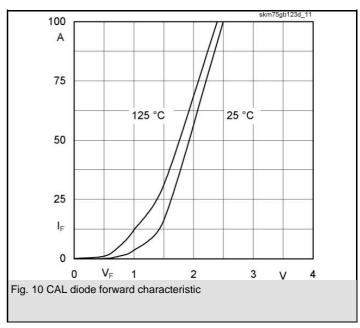


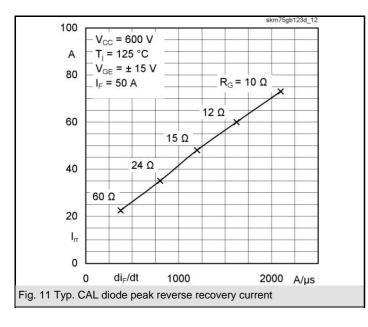


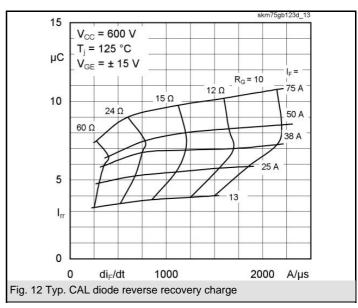


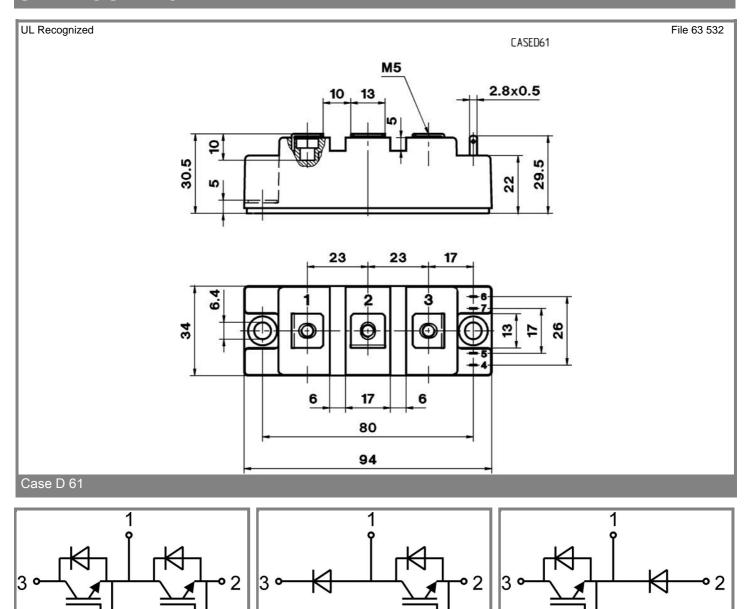












Case D 61

GAL

Case D 62 (→ D 61)

GAR

Case D 63 (→ D 61)