SEMITRANS[®] 3 #### **IGBT** Modules SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D #### **Features** - MOS input (voltage controlled) - N channel, Homogeneous Si - · Low inductance case - Very low tail current with low temperature dependence - High short circuit capability, self limiting to 6 x I_{cnom} - · Latch-up free - Fast & soft inverse CAL diodes - Isolated copper baseplate using DCB Direct Copper Bonding Technology - Large clearance (13 mm) and creepage distance (20 mm) #### **Typical Applications** - AC inverter drives on mains 575 - 750 $\rm V_{AC}$ - DC bus voltage 750 1200 V_{DC} - Public transport (auxiliary syst.) - Switching (not for linear use) | Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified | | | | | |--|---------------------------------------|---------------------------|-------------------|-------| | Symbol | Conditions | | Values | Units | | IGBT | | | | | | V_{CES} | T _j = 25 °C | | 1700 | V | | I _C | T _j = 150 °C | T _{case} = 25 °C | 220 | Α | | | | T _{case} = 80 °C | 150 | Α | | I _{CRM} | I _{CRM} =2xI _{Cnom} | | 300 | Α | | V_{GES} | | | ± 20 | V | | t _{psc} | V_{CC} = 1200 V; $V_{GE} \le 20$ V; | T _j = 125 °C | 10 | μs | | • | V _{CES} < 1700 V | • | | | | Inverse [| Diode | | | | | I _F | T _j = 150 °C | T _{case} = 25 °C | 150 | Α | | | | T _{case} = 80 °C | 100 | Α | | I _{FRM} | I _{FRM} =2xI _{Fnom} | | 300 | Α | | I _{FSM} | $t_p = 10 \text{ ms; sin.}$ | T _j = 150 °C | 1450 | Α | | Freewhe | eling Diode | | | • | | I _F | T _j = 150 °C | T_{case} = 25 °C | 230 | Α | | | | T _{case} = 80 °C | 150 | Α | | I _{FRM} | I _{FRM} =2xI _{Fnom} | | 400 | Α | | I _{FSM} | t _p = 10 ms; sin | T _j = 150 °C | 2200 | Α | | Module | | | | • | | $I_{t(RMS)}$ | | | 500 | Α | | T _{vj} | | | - 40 + 150 | °C | | T _{stg} | | | - 40 + 125 | °C | | V _{isol} | AC, 1 min. | | 4000 | ٧ | | Characteristics $T_c = 25$ °C, unless otherwise specifie | | | | | | ecified | |--|---|---|------|------|------|---------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 10 \text{ mA}$ | | 4,8 | 5,5 | 6,2 | V | | I _{CES} | $V_{GE} = 0 V, V_{CE} = V_{CES}$ | T _j = 25 °C | | 0,1 | 0,3 | mA | | V_{CE0} | | T _i = 25 °C | | 1,65 | 1,9 | V | | | | T _j = 125 °C | | 1,9 | 2,15 | V | | r _{CE} | V _{GE} = 15 V | T _j = 25°C | | 11,7 | 13,3 | mΩ | | | | T _j = 125°C | | 17,3 | 19 | mΩ | | V _{CE(sat)} | I _{Cnom} = 150 A, V _{GE} = 15 V | T _j = 25°C _{chiplev.} | | 3,4 | 3,9 | V | | . , | | T _j = 125°C _{chiplev} . | | 4,5 | 5 | V | | C _{ies} | | | | 20 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 2 | | nF | | C _{res} | | | | 0,55 | | nF | | Q_G | VGE=0V/+20V | | | 2000 | | nC | | t _{d(on)} | | | | 580 | | ns | | t _r `´ | $R_{Gon} = 4 \Omega$ | V _{CC} = 1200V | | 100 | | ns | | E _{on} | | I _{Cnom} = 150A | | 95 | | mJ | | t _{d(off)} | $R_{Goff} = 4 \Omega$ | T _j = 125 °C | | 750 | | ns | | t_f | | $V'_{GE} = \pm 15V$ | | 40 | | ns | | E_{off} | | | | 45 | | mJ | | R _{th(j-c)} | per IGBT | _ | | • | 0,1 | K/W | #### **IGBT Modules** SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D #### **Features** - MOS input (voltage controlled) - · N channel, Homogeneous Si - Low inductance case - Very low tail current with low temperature dependence - High short circuit capability, self limiting to 6 x I_{cnom} - Latch-up free - · Fast & soft inverse CAL diodes - Isolated copper baseplate using DCB Direct Copper Bonding Technology - Large clearance (13 mm) and creepage distance (20 mm) #### **Typical Applications** - AC inverter drives on mains 575 -750 V_{AC} - DC bus voltage 750 1200 V_{DC} - Public transport (auxiliary syst.) - Switching (not for linear use) This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. #### **IGBT** Modules SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D | Fe | าลเ | 11 | r | 2C | |----|-----|----|---|----| - MOS input (voltage controlled) - N channel , Homogeneous Si - · Low inductance case - Very low tail current with low temperature dependence - High short circuit capability, self limiting to 6 x I_{cnom} - Latch-up free - Fast & soft inverse CAL diodes - Isolated copper baseplate using DCB Direct Copper Bonding Technology - Large clearance (13 mm) and creepage distance (20 mm) #### **Typical Applications** - AC inverter drives on mains 575 -750 V_{AC} - DC bus voltage 750 1200 V_{DC} - Public transport (auxiliary syst.) - Switching (not for linear use) | Z _{th} | | | | |-----------------------|------------|--------|-------| | Symbol | Conditions | Values | Units | | Z,,,,,,,,, | | | | | Z
R _i | i = 1 | 72 | mk/W | | R _i | i = 2 | 19 | mk/W | | R _i | i = 3 | 6,9 | mk/W | | Ri | i = 4 | 2,1 | mk/W | | tau _i | i = 1 | 0,0946 | S | | taui | i = 2 | 0,011 | S | | tau _i | i = 3 | 0,0011 | S | | tau _i | i = 4 | 0 | s | | Z _{th(j-c)D} | · | | · | | R _i | i = 1 | 230 | mk/W | | R_{i} | i = 2 | 70 | mk/W | | R_{i} | i = 3 | 17 | mk/W | | R_{i} | i = 4 | 3 | mk/W | | tau _i | i = 1 | 0,0839 | s | | tau _i | i = 2 | 0,0069 | S | | tau _i | i = 3 | 0,0028 | s | | tau _i | i = 4 | 0,0002 | s | 6 7 Case D 56 GB GAL Case D 57 (→ D 56) GAR Case D 58 (→ D 56)