

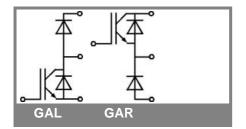
SEMITOP® 2

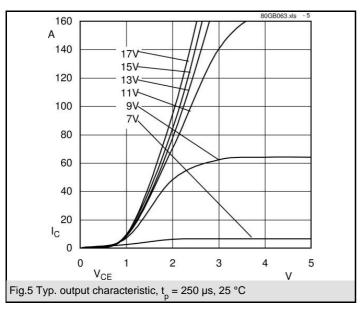
IGBT Module

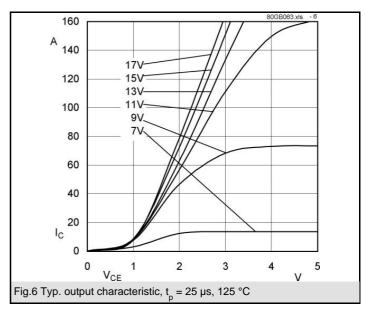
SK 70 GAR 063 SK 70 GAL 063

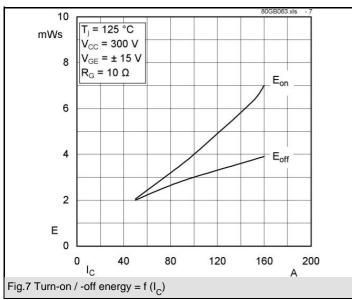
Preliminary Data

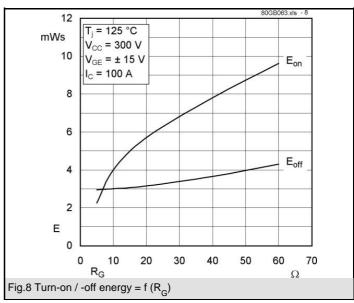
Features

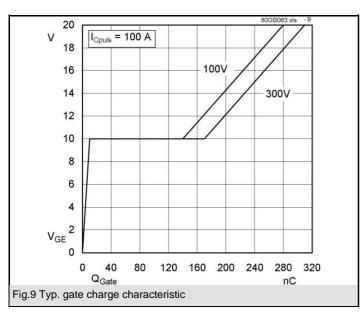

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence

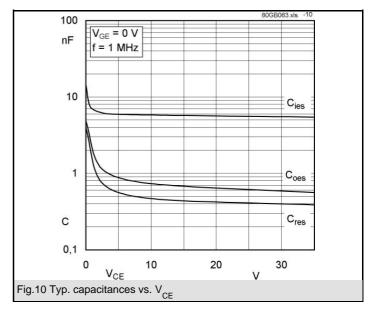

Typical Applications

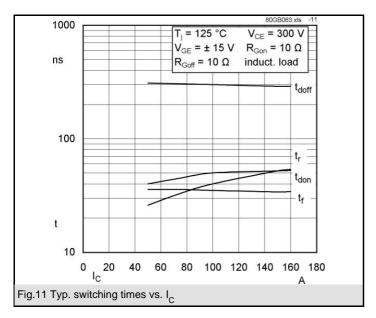

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

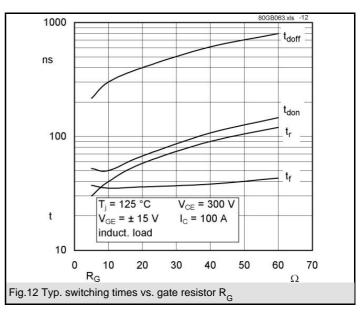

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	T _s = 25 (80) °C;	81 (57)	Α					
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	162 (114)	Α					
T _j		- 40 + 150	°C					
Freewheeling CAL diode								
I _F	T _s = 25 (80) °C;	79 (53)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	158 (106)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

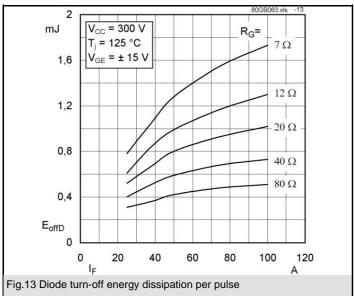

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT	•					
$\begin{matrix} V_{CE(sat)} \\ V_{GE(th)} \\ C_{ies} \\ R_{th(j-s)} \end{matrix}$	$\begin{aligned} & _{\text{C}} = 60 \text{ A, T}_{\text{j}} = 25 \text{ (125) °C} \\ & _{\text{CE}} = _{\text{GE}}; _{\text{C}} = \text{A} \\ & _{\text{CE}} = 25 \text{ V; V}_{\text{GE}} = 0 \text{ V; 1 MHz} \\ & _{\text{per IGBT}} \\ & _{\text{per module}} \end{aligned}$	4,5	1,8 (1,9) 5,5 5,6	6,5 0,6	V V nF K/W	
t _{d(on)} t _r t _{d(off)} t _f	under following conditions: $V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 60 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 10 \Omega$ Inductive load		45 30 300 35 4.7		ns ns ns ns	
E _{on} + E _{off}			4,7		IIIJ	
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	$T_j = 125 ^{\circ}\text{C}'$ $T_j = 125 ^{\circ}\text{C}$		1,4 (1,3) 0,85 6,5	0,9 11 0,9	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 60 \text{ A}; V_R = 300 \text{ V}$ $dI_F/dt = -3000 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		90 7 1,2		Α μC mJ	
Mechani						
M1 w	mounting torque		19	2	Nm g	
Case	SEMITOP® 2		T 18			

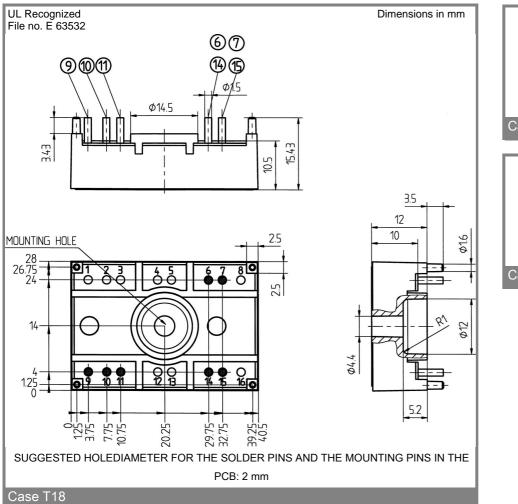


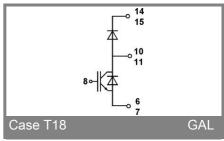


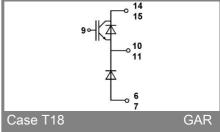












© by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.